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LETTER TO THE EDITOR

Melting of an antiferromagnetic Heisenberg spin chain by
external magnetic fields

T Mutou, N Shibata† and K Ueda
Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo
106-8666, Japan

Received 5 May 1998

Abstract. We study the magnetic-field-induced insulator–metal transition in thet–J ′ chain
model at quarter filling. In this model the nearest-neighbour hopping energyt competes
with the next-nearest-neighbour exchange energyJ ′, and for a smallt/J ′ the system is an
insulator accompanied by a charge ordering. Response to external magnetic fields is investigated
numerically by the density-matrix renormalization-group method. We have found that a transition
from the charge ordered insulating phase to a metallic phase occurs at a finite strength of the
magnetic field for smallt/J ′. The transition is an example of magnetic-field-induced melting
transition of a quantum antiferromagnetic Heisenberg spin chain system.

The metal–insulator transition controlled by the magnetic field has considerable practical
and scientific interest. For example, in some pseudo-perovskite manganite materials, the
magnetic-field-induced transition from the antiferromagnetic (AF) insulating phase with the
charge ordering to the ferromagnetic metallic phase was observed [1]. In these manganite
materials, multi-3d orbitals of Mn play an important role. It is possible, however, that
such a transition occurs in simpler systems. In this letter, we propose a simple single band
electronic system in which the insulator–metal transition is induced by the magnetic field.
The system is described by the one-dimensional (1D)t–J ′ model. The Hamiltonian of the
model is defined as

H = −t
∑
iσ

(c̃
†
iσ c̃i+1σ + H.c.)+ J ′

∑
i

Si · Si+2 (1)

where the operator̃c†iσ (c̃iσ ) creates (annihilates) a particle with spinσ at theith site. These
operators are defined in the subspace where double occupancy is excluded.Si denotes
the spin operator at theith site (figure 1). In this model, the nearest-neighbour hopping
energy t competes with the next-nearest-neighbour exchange energyJ ′. In a previous
paper [2], we have shown that the transition from the AF charge-ordered insulator to the
metal occurs at a finite value oft/J ′ ((t/J ′)C ' 0.18) in the 1D t–J ′ model at quarter
filling. For t/J ′ 6 (t/J ′)C the system behaves as a 1D antiferromagnetic (AF) Heisenberg
spin system. On the other hand, fort/J ′ > (t/J ′)C, the system belongs to the class of
Tomonaga–Luttinger liquids.

Since the charge ordering is caused by the AF Heisenberg coupling between spins, it
is expected that the charge ordering is broken by the magnetic field. Here we investigate
whether or not the insulator–metal transition occurs under finite strength of the magnetic
field for the regiont/J ′ < (t/J ′)C in the 1D t–J ′ model. We restrict ourselves to quarter
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Figure 1. The t–J ′ chain model. Each dot denotes a site and arrows represent carriers with
spins specified by arrows. The solid and broken lines denote the nearest-neighbour hoppingst

and the next-nearest-neighbour exchange interactionsJ ′, respectively.

filling and we fix the value oft/J ′ as t/J ′ = 0.1. It has been confirmed that the system is
in an insulating phase fort/J ′ = 0.1 [2]. In order to investigate the transition, we calculate
the charge density order parameterncd = nodd− neven, wherenodd(neven) is the mean value
of the number densityni at odd (even) sites. The order parameter is defined by

ncd ≡ 1

L/2

∑
i odd

(ni − ni+1) (2)

where L denotes the system size. Whilencd should be zero in the metallic phase, it
should be finite in the insulating phase. In the insulating phase, clearly there is two-fold
degeneracy for the charge ordering. We calculatencd with a small external fieldε at the
end of the system in order to break the symmetry. This external field is added to the model
Hamiltonian (1) asH− ε∑σ c̃

†
1σ c̃1σ at the first site (ε > 0). We study the response of the

system against the small symmetry breaking field. For the numerical calculation, we use
the density-matrix renormalization-group (DMRG) method [3], which is one of the standard
numerical methods for studying 1D quantum systems. We study systems of various sizes
(L = 16, 24, 32 and 48) by using the finite-system algorithm of the DMRG method [3].
The technical details of the numerical calculation are given in the previous paper.

The effect of the magnetic field in the system is described by the Zeeman term as

H̃ = H− gµBH
∑
i

Szi (3)

whereSzi denotes thez-component of theith site spin operator. Hereafter, theg-factor g,
Bohr magnetonµB, and the magnetic fieldH are expressed byh ash = gµBH . In practical
calculations, we obtain the ground state of the system in subspace with a certain value of
Sztot ≡

∑
i S

z
i . The value ofSztot varies fromSztot = 0 to Sztot = Szmax≡ L/4.

Figure 2 shows examples of the local number densityni for various values ofSztot with
an external fieldε/J ′ = 1.0×10−3 (L = 32). Shown here are the central 28 sites excluding
four sites at both ends of the system. Without the magnetic field, the system clearly shows
the charge ordering behaviour. Increasing the value ofSztot, the difference betweennodd and
neven decreases.

Charge density order parametersncd are shown in figure 3 for various system sizes
(L = 24, 32 and 48). The value ofncd obtained by the simple linear extrapolation with
no magnetic field is equal to 0.915. Error bars represent the standard deviation. While the
region of the charge ordered phase spreads out for larger-size systems, it is clear thatncd

vanishes in the regionSztot/S
z
max> 0.5 for all system sizes.

Since we cannot carry out the simple extrapolation for system sizes because of a
limited set of data for each value ofSztot, we cannot determine the transition point with
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Figure 2. Local number densityni at each site for various values ofSztot; S
z
tot/S

z
max= 0 (closed

circles), 1/8 (open circles), 1/4 (closed squares) and 3/8 (closed triangles). The system sizeL
of this example is 32 (ε/J ′ = 1.0× 10−3).
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Figure 3. Results ofncd versusSztot/S
z
max for various system sizes:L = 24 (circles), 32 (squares)

and 48 (triangles).

high accuracy. However, one can clearly see from the size dependence ofncd that the
charge ordering is completely broken forSztot/S

z
max> 0.5. In order to obtain the strength of

the magnetic fieldh corresponding to the value ofSztot such asSztot/S
z
max= 0.5, we calculate

the total ground state energỹEg(S
z
tot;L;h) = Eg(S

z
tot;L)− hSztot. For a given value ofSztot,

the strength of the magnetic fieldh is given by Ẽg(S
z
tot + 1;L;h) = Ẽg(S

z
tot;L;h), i.e.

h = Eg(S
z
tot + 1;L) − Eg(S

z
tot;L). For Sztot/S

z
max = 0.5, the corresponding magnitude ofh

is h ' 0.97J ′, which is obtained by the infinite system size extrapolation. Thus the charge
ordering expressed byncd completely vanishes for the magnetic field strengthh ∼ J ′.

We can obtain information on the order of the transition from the system-size dependence
shown in figure 3. One can see that all values ofncd in the regionSztot/S

z
max< 0.5 increases
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as the system size increases, and the values ofncd for Sztot/S
z
max = 0.5 are fixed to zero.

If the transition is of second order, the system-size dependence should be different from
the present result; there exists a point above which values decrease as the system size
increases. Besides, the system-size dependence is similar to the result of the system-size
dependence ofncd versust/J ′ in the previous study [2]. In the previous study we could
conclude that the phase transition is of first order. These facts therefore suggest that the
magnetic-field-induced transition discussed in the present paper is of first order.

We need to comment on the fully polarized case. WhenSztot is equal toSzmax, the next-
nearest-neighbour AF exchange interactionJ ′ works as the repulsive interaction between
the two spins on the next-nearest-neighbour sites. Therefore the system behaves as the
spinless fermion system interacting with the next-nearest-neighbour repulsion. In this case,
the particles avoid each other so as not to be on next-nearest-neighbour sites and another
type of charge ordering occurs. In this charge ordering, there are two empty sites between
every two neighbouring occupied sites: this type of charge ordering may be called ‘ooee’
ordering. In order to confirm this type of the ‘ooee’ ordering, we calculate the local number
densityni for the fully polarized system,Sztot = Szmax. To obtain the unique ground state
we calculateni with an external potentialδ at the first and end sites of the system as
H + δ∑σ (n1σ + nLσ ) (we setδ = J ′). Figure 4 shows the local number density for the
case ofSztot = Szmax. One can see that the ‘ooee’ charge ordering actually takes place. Note
that the charge ordering state atSztot = Szmax is singular and for any value ofSztot < Szmax this
charge ordering disappears while fluctuations towards the ‘ooee’ ordering remain for large
values ofSztot. For an infinite-size system, the number of the down spins is proportional to
the system size for any incomplete ferromagnetic state. Since the down spins destroy the
phase coherence of the ‘ooee’ ordering, it is expected that the charge ordering disappears
for any value ofSztot < Szmax in the thermodynamic limit.
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Figure 4. Local number densityni for the fully polarized caseSztot/S
z
max= 1. The system size

L of this example is 32. In the calculation we apply the local potentialδ at both ends of the
system:δ/J ′ = 1.0 (see the text).

In conclusion, we have calculated by the DMRG method the charge density order
parameterncd in the t–J ′ chain model (t/J ′ = 0.1) in the quarter-filled case. We have
found that the charge ordering defined byncd completely disappears forSztot/S

z
max > 0.5.



Letter to the Editor L511

The charge ordering disappears, not for the infinitesimal strength of the magnetic field,
but beyond a certain finite strength. The value ofSztot of the transition corresponds to the
magnetic field strengthh ∼ J ′. It is consistent with the fact that the energy scale of the
AF Heisenberg spin chain system is dominated byJ ′. In [2] we calculated the charge gap
1c of the system, and obtained the result that the infinite-system-size extrapolation value
of 1c(L) is comparable to the hopping energyt for t/J ′ = 0.1 in the paramagnetic phase.
It means that the charge gap is reduced by the magnetic field from1c ∼ t at h = 0 to
1c = 0 at h ∼ J ′. The transition discussed in the present paper is an example of melting
of the 1D quantum Heisenberg antiferromagnet induced by the magnetic field.

This type of transition is expected to occur in some insulating materials. For instance,
in the chain part of Sr14Cu24O41, the system is insulating [4] instead of the partially filled
Cu 3d band [5, 6, 7]. If the insulating state is caused by the AF interaction between next-
nearest-neighbouring electrons, it is possible that the insulator–metal transition which is
discussed here occurs under a strong magnetic field. However, it should be noted that the
typical magnitude of the magnetic field of the transition must be large, since the energy
scale corresponding to the AF interaction should be bigger than the spin gap1s ∼ 140 K
of the system [8].

We are grateful to Hiroshi Kontani for useful discussions. This work is financially supported
by Grant-in-Aid from the Ministry of Education, Science and Culture of Japan.

References

[1] Tomioka Y, Asamitsu A, Morimoto Y, Kuwahara H and Tokura Y 1995Phys. Rev. Lett.74 5108
Tomioka Y, Asamitsu A, Kuwahara H, Moritomo Y and Tokura Y 1996Phys. Rev.B 53 R1689
Tokura Y, Kuwahara H, Moritomo Y, Tomioka Y and Asamitsu A 1996Phys. Rev. Lett.76 3184
Tokunaga M, Miura N, Tomioka Y and Tokura Y 1998Phys. Rev.B 57 5259

[2] Mutou T, Shibata N and Ueda K 1998Phys. Rev.B 57 13702
[3] White S R 1992Phys. Rev. Lett.69 2863

White S R 1993Phys. Rev.B 48 10345
[4] McElfresh M W, Coey J M D, Strobel P and von Molnar S 1989Phys. Rev.B 40 825
[5] Matsuda M, Katsumata K, Eisaki H, Motoyama N, Uchida S, Shapiro S M and Shirane G 1996Phys. Rev.

B 54 12199
[6] Motoyama N, Osafune T, Kakeshita T, Eisaki H and Uchida S 1997Phys. Rev.B 55 R3386. According to

their interpretation of the result of [5], the mean valence of the Cu ion is Cu+2.5.
[7] The mean valence Cu+2.6 in the chain is obtained if one assumes simply that the valence of Cu in the ladder

is Cu+2.
[8] Carter S A, Batlogg B, Cava R J, Krajewski J J, Peck Jr W F and Rice T M 1996Phys. Rev. Lett.77 1378.

It is suggested that the chain part of Sr14Cu24O41 has a spin gap1s and1s ∼ 140K.


